In this example, I will calculate coefficients for DF4:
Here, we are looking for first derivative, so f_n^1. We only need to invert system to get coefficients. Trick is to move \Delta_x^k on right vector. Resulting matrix is then easy to solve. At the end, we have:
With the same method, it is possible to get coefficients for all type of derivative, centered and uncentered.
This table contains the coefficients of the central differences, for several orders of accuracy.
Derivative | Accuracy | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | -1/2 | 0 | 1/2 | ||||||
4 | 1/12 | -2/3 | 0 | 2/3 | -1/12 | |||||
6 | -1/60 | 3/20 | -3/4 | 0 | 3/4 | -3/20 | 1/60 | |||
8 | 1/280 | -4/105 | 1/5 | -4/5 | 0 | 4/5 | -1/5 | 4/105 | -1/280 | |
2 | 2 | 1 | −2 | 1 | ||||||
4 | -1/12 | 4/3 | -5/2 | 4/3 | -1/12 | |||||
6 | 1/90 | -3/20 | 3/2 | -49/18 | 3/2 | -3/20 | 1/90 | |||
8 | -1/560 | 8/315 | -1/5 | 8/5 | -205/72 | 8/5 | -1/5 | 8/315 | -1/560 | |
3 | 2 | -1/2 | 1 | 0 | -1 | 1/2 | ||||
4 | 1/8 | -1 | 13/8 | 0 | -13/8 | 1 | -1/8 | |||
6 | -7/240 | 3/10 | -169/120 | 61/30 | 0 | -61/30 | 169/120 | -3/10 | 7/240 | |
4 | 2 | 1 | -4 | 6 | -4 | 1 | ||||
4 | -1/6 | 2 | -13/2 | 28/3 | -13/2 | 2 | -1/6 | |||
6 | 7/240 | -2/5 | 169/60 | -122/15 | 91/8 | -122/15 | 169/60 | -2/5 | 7/240 | |
5 | 2 | -1/2 | 2 | -5/2 | 0 | 5/2 | -2 | 1/2 |
This table contains the coefficients of the forward differences, for several order of accuracy.
Derivative | Accuracy | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | |||||||
2 | -3/2 | 2 | -1/2 | |||||||
3 | -11/6 | 3 | -3/2 | 1/3 | ||||||
4 | -25/12 | 4 | -3 | 4/3 | -1/4 | |||||
5 | -137/60 | 5 | -5 | 10/3 | -5/4 | 1/5 | ||||
6 | -49/20 | 6 | -15/2 | 20/3 | -15/4 | 6/5 | -1/6 | |||
2 | 1 | 1 | -2 | 1 | ||||||
2 | 2 | -5 | 4 | -1 | ||||||
3 | 35/12 | -26/3 | 19/2 | -14/3 | 11/12 | |||||
4 | 15/4 | -77/6 | 107/6 | -13 | 61/12 | -5/6 | ||||
5 | 203/45 | -87/5 | 117/4 | -254/9 | 33/2 | -27/5 | 137/180 | |||
6 | 469/90 | -223/10 | 879/20 | -949/18 | 41 | -201/10 | 1019/180 | -7/10 | ||
3 | 1 | -1 | 3 | -3 | 1 | |||||
2 | -5/2 | 9 | -12 | 7 | -3/2 | |||||
3 | -17/4 | 71/4 | -59/2 | 49/2 | -41/4 | 7/4 | ||||
4 | -49/8 | 29 | -461/8 | 62 | -307/8 | 13 | -15/8 | |||
5 | -967/120 | 638/15 | -3929/40 | 389/3 | -2545/24 | 268/5 | -1849/120 | 29/15 | ||
6 | -801/80 | 349/6 | -18353/120 | 2391/10 | -1457/6 | 4891/30 | -561/8 | 527/30 | -469/240 | |
4 | 1 | 1 | -4 | 6 | -4 | 1 | ||||
2 | 3 | -14 | 26 | -24 | 11 | -2 | ||||
3 | 35/6 | -31 | 137/2 | -242/3 | 107/2 | -19 | 17/6 | |||
4 | 28/3 | -111/2 | 142 | -1219/6 | 176 | -185/2 | 82/3 | -7/2 | ||
5 | 1069/80 | -1316/15 | 15289/60 | -2144/5 | 10993/24 | -4772/15 | 2803/20 | -536/15 | 967/240 |
Backward can be obtained by inverting signs.
(source : http://en.wikipedia.org/wiki/Finite_difference_coefficient)